Appendix B — Mathematical Reference
A quick-reference summary of the mathematics used throughout this book.
B.1 Linear Algebra
Key Operations
| Symbol | Meaning |
|---|---|
| $A^\top$ | Transpose of matrix $A$ |
| $A^{-1}$ | Inverse of square matrix $A$ |
| $\det(A)$ | Determinant |
| $\text{tr}(A)$ | Trace: sum of diagonal elements |
| $A = L L^\top$ | Cholesky decomposition (positive definite $A$) |
Eigendecomposition
For symmetric $A$: $$A = Q \Lambda Q^\top$$ where $Q$ is orthogonal (columns are eigenvectors) and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
Solving Linear Systems
$Ax = b$ solved by LU decomposition: $O(n^3)$ complexity.
B.2 Calculus and Optimisation
Taylor Series (second order)
$$f(x + \delta) \approx f(x) + f'(x),\delta + \tfrac{1}{2} f''(x),\delta^2$$
Integration by Parts
$$\int_a^b u,dv = [uv]_a^b - \int_a^b v,du$$
Gradient Descent
$$\theta_{k+1} = \theta_k - \eta \nabla_\theta \mathcal{L}(\theta_k)$$
Convergence guaranteed for $L$-smooth convex $\mathcal{L}$ with $\eta < 1/L$.
B.3 Probability and Statistics
Normal Distribution
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \qquad \Phi(x) = \int_{-\infty}^x \phi(t),dt$$
Useful identities:
- $\Phi(-x) = 1 - \Phi(x)$
- $E[e^{\sigma Z}] = e^{\sigma^2/2}$ for $Z \sim N(0,1)$
Log-Normal Distribution
If $X = e^{\mu + \sigma Z}$, $Z \sim N(0,1)$: $$E[X] = e^{\mu + \sigma^2/2}, \qquad \text{Var}(X) = e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$$
Moment Generating Function
$$M_X(t) = E[e^{tX}]$$
For $X \sim N(\mu, \sigma^2)$: $M_X(t) = e^{\mu t + \sigma^2 t^2/2}$.
B.4 Stochastic Calculus
Brownian Motion Properties
- $W_0 = 0$
- $W_t - W_s \sim N(0, t-s)$ for $t > s$
- Independent increments
- Continuous paths (almost surely)
Itô's Lemma
For $f(t, W_t)$ twice differentiable: $$df = \frac{\partial f}{\partial t},dt + \frac{\partial f}{\partial x},dW_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2},dt$$
Geometric Brownian Motion
$$dS_t = \mu S_t,dt + \sigma S_t,dW_t$$ $$S_t = S_0 \exp!\left[\left(\mu - \tfrac{\sigma^2}{2}\right)t + \sigma W_t\right]$$
Girsanov Theorem
Under measure $\mathbb{Q}$ defined by: $$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp!\left(-\int_0^T \theta_t,dW_t - \tfrac{1}{2}\int_0^T \theta_t^2,dt\right)$$ the process $\tilde{W}_t = W_t + \int_0^t \theta_s,ds$ is a $\mathbb{Q}$-Brownian motion.
B.5 Black-Scholes Formula Quick Reference
$$C = S,\Phi(d_1) - K e^{-rT}\Phi(d_2)$$ $$P = K e^{-rT}\Phi(-d_2) - S,\Phi(-d_1)$$
$$d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}, \qquad d_2 = d_1 - \sigma\sqrt{T}$$
Greeks
| Greek | Call | Put |
|---|---|---|
| $\Delta$ | $\Phi(d_1)$ | $\Phi(d_1) - 1$ |
| $\Gamma$ | $\phi(d_1)/(S\sigma\sqrt{T})$ | same |
| $\mathcal{V}$ | $S,\phi(d_1)\sqrt{T}$ | same |
| $\Theta$ | $-S\phi(d_1)\sigma/(2\sqrt{T}) - rKe^{-rT}\Phi(d_2)$ | $-S\phi(d_1)\sigma/(2\sqrt{T}) + rKe^{-rT}\Phi(-d_2)$ |
| $\rho$ | $KTe^{-rT}\Phi(d_2)$ | $-KTe^{-rT}\Phi(-d_2)$ |
B.6 Standard Normal Table (selected values)
| $z$ | $\Phi(z)$ |
|---|---|
| 0.00 | 0.5000 |
| 0.25 | 0.5987 |
| 0.50 | 0.6915 |
| 0.75 | 0.7734 |
| 1.00 | 0.8413 |
| 1.28 | 0.8997 |
| 1.645 | 0.9500 |
| 1.96 | 0.9750 |
| 2.326 | 0.9900 |
| 2.576 | 0.9950 |
| 3.00 | 0.9987 |
B.7 Key Financial Formulas
Bond Duration and Convexity
$$D = \frac{1}{P}\sum_{i=1}^n \frac{t_i \cdot C_i}{(1+y)^{t_i}}, \qquad \text{Cx} = \frac{1}{P}\sum_{i=1}^n \frac{t_i(t_i+1)\cdot C_i}{(1+y)^{t_i+2}}$$
Nelson-Siegel Yield Curve
$$y(\tau) = \beta_0 + (\beta_1 + \beta_2)\frac{1 - e^{-\tau/\lambda}}{\tau/\lambda} - \beta_2 e^{-\tau/\lambda}$$
Vasicek Short Rate
$$dr_t = \kappa(\theta - r_t),dt + \sigma,dW_t$$
Zero-coupon bond: $P(t,T) = A(t,T)e^{-B(t,T)r_t}$ where: $$B(t,T) = \frac{1 - e^{-\kappa(T-t)}}{\kappa}$$ $$\ln A(t,T) = \left(\theta - \frac{\sigma^2}{2\kappa^2}\right)(B(t,T) - (T-t)) - \frac{\sigma^2}{4\kappa}B(t,T)^2$$